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Preconnect, prefetch, prerender ...
aka, building a web performance oracle in your application!
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@igrigorikblink-dev thread

Top 1M Alexa sites...

● Cable profile (5Mbps / 28 ms RTT)
● Main thread attribution in Blink

○ Measured via Telemetry

● 69.5% of time blocked on network
● 6.6% of time blocked JavaScript
● 5.1% blocked on Layout
● 4.5% blocked on Paint
● ...

● No surprise here (hopefully)
○ First page load is network bound
○ First page load is latency bound
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Our pages consist of dozens of assets

Primer on Web Performance (Chapter 10)

… (snip 30 requests) ...

● 52 requests
● 4+ seconds

Huh? 

@igrigorik
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Speed, performance and human perception

“Connection view” tells the story...
● 30 connections

○ DNS lookups
○ TCP handshakes
○ …

● Blue: download time

@igrigorik

We’re not BW limited, 
we’re literally idling, 
waiting on the network 
to deliver resources.
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Let’s build a smarter browser!
We can hide some of the network latency through clever tricks.



The pre-* party...

Primer on Web Performance (Chapter 10) @igrigorik

Preresolve

Preconnect

Prefetch

Prerender
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@igrigorik

Pre-resolve DNS names on browser startup... 

● Scenario:  when you load the browser first 
thing in the morning (or after restart), where 
do you usually head?

● Let’s pre-resolve all of the popular names!
○ Chrome resolves top 10 destinations.

Head to chrome://dns/ to see your list.

High Performance Networking in Google Chrome
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@igrigorik

Preresolve is cute, but does it help much?

● How fast is your local DNS?  
Chrome knows the answer...

chrome://histograms/DNS

● Good case: < 30 ms
● Average: 30-100 ms
● Ouch:  100 ms+

High Performance Networking in Google Chrome
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@igrigorik

Let’s predict where you’re heading next...

If you type in “ama” what’s the likelihood you’re heading to Amazon?
● Chrome tracks the hit / miss count, and uses it to initiate DNS preresolve and TCP preconnect!
● High confidence hits may trigger a full prerender in a background tab.
● Head to chrome://predictors/ to see your list.

High Performance Networking in Google Chrome
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@igrigorik

Hmm, pre-rendering you say? Tell me more...

High Performance Networking in Google Chrome

● Head to chrome://net-internals/#prerender
● Try it yourself via prerender-test.appspot.com.
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@igrigorik

Instant Pages *is* Chrome Prerendering!

High Performance Networking in Google Chrome
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@igrigorik

Could we optimize repeat visits further? Why, yes!

High Performance Networking in Google Chrome

● Remember subresource hostnames + track stats on pre{connect, resolve} rates
● Use above information on future navigations to initiate appropriate actions...

Check your own site: chrome://dns
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https://www.twitter.com/igrigorik
http://origin.igvita.com/posa/high-performance-networking-in-google-chrome/
http://origin.igvita.com/posa/high-performance-networking-in-google-chrome/


@igrigorik

Can we discover critical resources quicker? Yep...

Chrome preloader

Chrome’s preloader delivers a 
~20% speed improvement!

● Blocking resources block DOM construction... 
● Preload scanner “looks ahead” in the HTML document to identify critical resources

○ JavaScript, CSS, etc. 

Don’t hide your resources from the preload scanner! E.g. JS loaders, polyfills, etc.
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 “We were using XHR to download CSS... When it came it our 
attention that XHRs are requested at low priority we decided to run 
an experiment to see its impact on G+ latency (vs using declarative 
markup like <link>).

   In SPDY capable browsers it (using <link>) resulted in a big latency 
improvement. In Chrome 27 we saw a 4x speedup at the median, 
and 5x at 25th percentile. In Firefox 21 we saw a 5x speedup at 
median, and 8x at 25th percentile.”

Shubhie Panicker - G+ Front-end Team

https://plus.google.com/+IlyaGrigorik/posts/G6W7XVHXiED
https://plus.google.com/+IlyaGrigorik/posts/G6W7XVHXiED


In short, Chrome does a lot!
but you can help it…  



Speed is a feature (Chapter 1) @igrigorik

The browser is trying to predict and 
anticipate user activity, but you have the 
app-specific insights - leverage them! 

1. Pre-resolve DNS hostnames
2. Mark critical subresources (don’t hide them!)
3. Prefetch critical resources
4. Prerender where applicable

http://chimera.labs.oreilly.com/books/1230000000545/ch01.html
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@igrigorik

Embed “dns-prefetch” hints...

Embed prefetch hints in <head> to hint the browser to pre-resolve these names.

● Useful for critical resources later in the page
● Useful for resources behind a redirect

○ host1.com/resource > 301 > host2.com/resouce
■ dns-prefetch: host2.com

○ (or even better, eliminate the redirect :))

   <link rel="dns-prefetch" href="hostname_to_resolve.com">
   <link rel="dns-prefetch" href="host2.com">

High Performance Networking in Google Chrome
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@igrigorik

Embed “subresource” hints...

Embed subresource hints in <head> to initiate immediate fetch for current page!

● Subresource hint identifies critical resources required for current page load.
● Place subresource hints as early as possible.

○ In a way, this is a “manual preload scanner” strategy ...

   <link rel="subresource" href="critical/app.js">
   <link rel="subresource" href="critical/style.css">

High Performance Networking in Google Chrome
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@igrigorik

Embed “prefetch” hints...

Embed prefetch hints in <head> to initiate deferred fetch for later navigation.

● Prefetch hint identifies resources that may be needed in future navigation.
● Prefetch hints have lowest possible priority.
● Prefetch hints are content agnostic: fetch asset, place in cache.

○ You do have cache headers enabled, right? Right?

   <link rel="prefetch" href="checkout.html">
   <link rel="prefetch" href="other-styles.css">

High Performance Networking in Google Chrome
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@igrigorik

Embed “prerender” hints...

Embed prerender hints in <head> to initiate background prerender of entire page!

● The page is fetch, and all of its assets! 
● Use Page Visibility API to defer JS actions until page is visible.

○ Analytics beacons (GA does this already), custom code, etc.

● Only “safe” pages can be prerendered (aka, GET).
● Prerendering is resource heavy - use with caution.

   <link rel="prerender" href="checkout.html">

High Performance Networking in Google Chrome
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Predict, measure, optimize… iterate.

You can inject each of the hints when the page is generated
○ You know the structure of the page / application, use it...

○ Run offline log analysis (e.g. step_a.html > step_b.html)

You can inject hints “at runtime” based on user interactions!
○ Via the magic of JavaScript, simply add the appropriate link tag:

  var hint = document.createElement("link")
  hint.setAttribute("rel", "prerender")
  hint.setAttribute("href", "next-page.html")

  document.getElementsByTagName("head")[0].appendChild(hint)

P.S. If the hint is no longer relevant, reverse works also.. nuke it from the DOM!



Twitter    igrigorik
   Email     igrigorik@google.com
     Web     igvita.com

    TL;DR
1. <link rel="dns-prefetch" href="hostname_to_resolve.com">

a. Pre-resolve DNS hostnames for assets later in the page! (Most browsers)

2. <link rel="subresource"  href="/javascript/myapp.js">

a. Initiate early resource fetch for current navigation (Chrome only)

3. <link rel="prefetch"  href="/images/big.jpeg">

a. Prefetch asset for a future navigation, place in cache… (Most browsers)

4. <link rel="prerender"  href="//example.org/next_page.html">

a. Prerender page in background tab for future navigation

● Slides @ bit.ly/1bUFCsI
● Checkout Steve’s prebrowsing slides!

http://twitter.com/igrigorik
http://www.igvita.com/
http://stevesouders.com/docs/velocity-prebrowsing-20131015.pptx

