
Ilya Grigorik - @igrigorik
igrigorik@google.com

Preconnect, prefetch, prerender ...
aka, building a web performance oracle in your application!

mailto:igrigorik@google.com
mailto:igrigorik@google.com

@igrigorikblink-dev thread

Top 1M Alexa sites...

● Cable profile (5Mbps / 28 ms RTT)
● Main thread attribution in Blink

○ Measured via Telemetry

● 69.5% of time blocked on network
● 6.6% of time blocked JavaScript
● 5.1% blocked on Layout
● 4.5% blocked on Paint
● ...

● No surprise here (hopefully)
○ First page load is network bound
○ First page load is latency bound

https://www.twitter.com/igrigorik
https://www.twitter.com/igrigorik
https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/-R47hzmkdig/mipwor_0GW8J
https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/-R47hzmkdig/mipwor_0GW8J

Our pages consist of dozens of assets

Primer on Web Performance (Chapter 10)

… (snip 30 requests) ...

● 52 requests
● 4+ seconds

Huh?

@igrigorik

http://chimera.labs.oreilly.com/books/1230000000545/ch10.html
http://chimera.labs.oreilly.com/books/1230000000545/ch10.html
https://www.twitter.com/igrigorik
https://www.twitter.com/igrigorik

Speed, performance and human perception

“Connection view” tells the story...
● 30 connections

○ DNS lookups
○ TCP handshakes
○ …

● Blue: download time

@igrigorik

We’re not BW limited,
we’re literally idling,
waiting on the network
to deliver resources.

http://chimera.labs.oreilly.com/books/1230000000545/ch10.html#ANATOMY_OF_WEB_APPLICATION
http://chimera.labs.oreilly.com/books/1230000000545/ch10.html#ANATOMY_OF_WEB_APPLICATION
https://www.twitter.com/igrigorik
https://www.twitter.com/igrigorik

Let’s build a smarter browser!
We can hide some of the network latency through clever tricks.

The pre-* party...

Primer on Web Performance (Chapter 10) @igrigorik

Preresolve

Preconnect

Prefetch

Prerender

http://chimera.labs.oreilly.com/books/1230000000545/ch10.html
http://chimera.labs.oreilly.com/books/1230000000545/ch10.html
https://www.twitter.com/igrigorik
https://www.twitter.com/igrigorik

@igrigorik

Pre-resolve DNS names on browser startup...

● Scenario: when you load the browser first
thing in the morning (or after restart), where
do you usually head?

● Let’s pre-resolve all of the popular names!
○ Chrome resolves top 10 destinations.

Head to chrome://dns/ to see your list.

High Performance Networking in Google Chrome

https://www.twitter.com/igrigorik
https://www.twitter.com/igrigorik
http://origin.igvita.com/posa/high-performance-networking-in-google-chrome/
http://origin.igvita.com/posa/high-performance-networking-in-google-chrome/

@igrigorik

Preresolve is cute, but does it help much?

● How fast is your local DNS?
Chrome knows the answer...

chrome://histograms/DNS

● Good case: < 30 ms
● Average: 30-100 ms
● Ouch: 100 ms+

High Performance Networking in Google Chrome

https://www.twitter.com/igrigorik
https://www.twitter.com/igrigorik
http://origin.igvita.com/posa/high-performance-networking-in-google-chrome/
http://origin.igvita.com/posa/high-performance-networking-in-google-chrome/

@igrigorik

Let’s predict where you’re heading next...

If you type in “ama” what’s the likelihood you’re heading to Amazon?
● Chrome tracks the hit / miss count, and uses it to initiate DNS preresolve and TCP preconnect!
● High confidence hits may trigger a full prerender in a background tab.
● Head to chrome://predictors/ to see your list.

High Performance Networking in Google Chrome

https://www.twitter.com/igrigorik
https://www.twitter.com/igrigorik
http://origin.igvita.com/posa/high-performance-networking-in-google-chrome/
http://origin.igvita.com/posa/high-performance-networking-in-google-chrome/

@igrigorik

Hmm, pre-rendering you say? Tell me more...

High Performance Networking in Google Chrome

● Head to chrome://net-internals/#prerender
● Try it yourself via prerender-test.appspot.com.

https://www.twitter.com/igrigorik
https://www.twitter.com/igrigorik
http://origin.igvita.com/posa/high-performance-networking-in-google-chrome/
http://origin.igvita.com/posa/high-performance-networking-in-google-chrome/
http://prerender-test.appspot.com

@igrigorik

Instant Pages *is* Chrome Prerendering!

High Performance Networking in Google Chrome

https://www.twitter.com/igrigorik
https://www.twitter.com/igrigorik
http://origin.igvita.com/posa/high-performance-networking-in-google-chrome/
http://origin.igvita.com/posa/high-performance-networking-in-google-chrome/
http://www.youtube.com/watch?v=_Jn93FDx9oI

@igrigorik

Could we optimize repeat visits further? Why, yes!

High Performance Networking in Google Chrome

● Remember subresource hostnames + track stats on pre{connect, resolve} rates
● Use above information on future navigations to initiate appropriate actions...

Check your own site: chrome://dns

https://www.twitter.com/igrigorik
https://www.twitter.com/igrigorik
http://origin.igvita.com/posa/high-performance-networking-in-google-chrome/
http://origin.igvita.com/posa/high-performance-networking-in-google-chrome/

@igrigorik

Can we discover critical resources quicker? Yep...

Chrome preloader

Chrome’s preloader delivers a
~20% speed improvement!

● Blocking resources block DOM construction...
● Preload scanner “looks ahead” in the HTML document to identify critical resources

○ JavaScript, CSS, etc.

Don’t hide your resources from the preload scanner! E.g. JS loaders, polyfills, etc.

https://www.twitter.com/igrigorik
https://www.twitter.com/igrigorik
https://plus.google.com/+IlyaGrigorik/posts/8AwRUE7wqAE
https://plus.google.com/+IlyaGrigorik/posts/8AwRUE7wqAE

 “We were using XHR to download CSS... When it came it our
attention that XHRs are requested at low priority we decided to run
an experiment to see its impact on G+ latency (vs using declarative
markup like <link>).

 In SPDY capable browsers it (using <link>) resulted in a big latency
improvement. In Chrome 27 we saw a 4x speedup at the median,
and 5x at 25th percentile. In Firefox 21 we saw a 5x speedup at
median, and 8x at 25th percentile.”

Shubhie Panicker - G+ Front-end Team

https://plus.google.com/+IlyaGrigorik/posts/G6W7XVHXiED
https://plus.google.com/+IlyaGrigorik/posts/G6W7XVHXiED

In short, Chrome does a lot!
but you can help it…

Speed is a feature (Chapter 1) @igrigorik

The browser is trying to predict and
anticipate user activity, but you have the
app-specific insights - leverage them!

1. Pre-resolve DNS hostnames
2. Mark critical subresources (don’t hide them!)
3. Prefetch critical resources
4. Prerender where applicable

http://chimera.labs.oreilly.com/books/1230000000545/ch01.html
http://chimera.labs.oreilly.com/books/1230000000545/ch01.html
https://www.twitter.com/igrigorik
https://www.twitter.com/igrigorik

@igrigorik

Embed “dns-prefetch” hints...

Embed prefetch hints in <head> to hint the browser to pre-resolve these names.

● Useful for critical resources later in the page
● Useful for resources behind a redirect

○ host1.com/resource > 301 > host2.com/resouce
■ dns-prefetch: host2.com

○ (or even better, eliminate the redirect :))

 <link rel="dns-prefetch" href="hostname_to_resolve.com">
 <link rel="dns-prefetch" href="host2.com">

High Performance Networking in Google Chrome

https://www.twitter.com/igrigorik
https://www.twitter.com/igrigorik
http://origin.igvita.com/posa/high-performance-networking-in-google-chrome/
http://origin.igvita.com/posa/high-performance-networking-in-google-chrome/

@igrigorik

Embed “subresource” hints...

Embed subresource hints in <head> to initiate immediate fetch for current page!

● Subresource hint identifies critical resources required for current page load.
● Place subresource hints as early as possible.

○ In a way, this is a “manual preload scanner” strategy ...

 <link rel="subresource" href="critical/app.js">
 <link rel="subresource" href="critical/style.css">

High Performance Networking in Google Chrome

https://www.twitter.com/igrigorik
https://www.twitter.com/igrigorik
http://origin.igvita.com/posa/high-performance-networking-in-google-chrome/
http://origin.igvita.com/posa/high-performance-networking-in-google-chrome/

@igrigorik

Embed “prefetch” hints...

Embed prefetch hints in <head> to initiate deferred fetch for later navigation.

● Prefetch hint identifies resources that may be needed in future navigation.
● Prefetch hints have lowest possible priority.
● Prefetch hints are content agnostic: fetch asset, place in cache.

○ You do have cache headers enabled, right? Right?

 <link rel="prefetch" href="checkout.html">
 <link rel="prefetch" href="other-styles.css">

High Performance Networking in Google Chrome

https://www.twitter.com/igrigorik
https://www.twitter.com/igrigorik
http://origin.igvita.com/posa/high-performance-networking-in-google-chrome/
http://origin.igvita.com/posa/high-performance-networking-in-google-chrome/

@igrigorik

Embed “prerender” hints...

Embed prerender hints in <head> to initiate background prerender of entire page!

● The page is fetch, and all of its assets!
● Use Page Visibility API to defer JS actions until page is visible.

○ Analytics beacons (GA does this already), custom code, etc.

● Only “safe” pages can be prerendered (aka, GET).
● Prerendering is resource heavy - use with caution.

 <link rel="prerender" href="checkout.html">

High Performance Networking in Google Chrome

https://www.twitter.com/igrigorik
https://www.twitter.com/igrigorik
http://origin.igvita.com/posa/high-performance-networking-in-google-chrome/
http://origin.igvita.com/posa/high-performance-networking-in-google-chrome/

Predict, measure, optimize… iterate.

You can inject each of the hints when the page is generated
○ You know the structure of the page / application, use it...

○ Run offline log analysis (e.g. step_a.html > step_b.html)

You can inject hints “at runtime” based on user interactions!
○ Via the magic of JavaScript, simply add the appropriate link tag:

 var hint = document.createElement("link")
 hint.setAttribute("rel", "prerender")
 hint.setAttribute("href", "next-page.html")

 document.getElementsByTagName("head")[0].appendChild(hint)

P.S. If the hint is no longer relevant, reverse works also.. nuke it from the DOM!

Twitter igrigorik
 Email igrigorik@google.com
 Web igvita.com

 TL;DR
1. <link rel="dns-prefetch" href="hostname_to_resolve.com">

a. Pre-resolve DNS hostnames for assets later in the page! (Most browsers)

2. <link rel="subresource" href="/javascript/myapp.js">

a. Initiate early resource fetch for current navigation (Chrome only)

3. <link rel="prefetch" href="/images/big.jpeg">

a. Prefetch asset for a future navigation, place in cache… (Most browsers)

4. <link rel="prerender" href="//example.org/next_page.html">

a. Prerender page in background tab for future navigation

● Slides @ bit.ly/1bUFCsI
● Checkout Steve’s prebrowsing slides!

http://twitter.com/igrigorik
http://www.igvita.com/
http://stevesouders.com/docs/velocity-prebrowsing-20131015.pptx

